
Q1

Q2

Q3

1
2
3

4

5

6

7

8

9

1011
12

13

14

15

16

17

18

19

20

BCP 9563 1–23
C
O

R
R

E
C

TE
D

 P
R

O
O

FCommentary

Curcumin as ‘‘Curecumin’’: From kitchen to clinic
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a b s t r a c t

Although turmeric (Curcuma longa; an Indian spice) has been described in Ayurveda, as a

treatment for inflammatory diseases and is referred by different names in different cultures,

the active principle called curcumin or diferuloylmethane, a yellow pigment present in

turmeric (curry powder) has been shown to exhibit numerous activities. Extensive research

over the last half century has revealed several important functions of curcumin. It binds to a

variety of proteins and inhibits the activity of various kinases. By modulating the activation

of various transcription factors, curcumin regulates the expression of inflammatory

enzymes, cytokines, adhesion molecules, and cell survival proteins. Curcumin also down-

regulates cyclin D1, cyclin E and MDM2; and upregulates p21, p27, and p53. Various

preclinical cell culture and animal studies suggest that curcumin has potential as an

antiproliferative, anti-invasive, and antiangiogenic agent; as a mediator of chemoresistance

and radioresistance; as a chemopreventive agent; and as a therapeutic agent in wound

healing, diabetes, Alzheimer disease, Parkinson disease, cardiovascular disease, pulmonary

disease, and arthritis. Pilot phase I clinical trials have shown curcumin to be safe even when

consumed at a daily dose of 12 g for 3 months. Other clinical trials suggest a potential

therapeutic role for curcumin in diseases such as familial adenomatous polyposis, inflam-

matory bowel disease, ulcerative colitis, colon cancer, pancreatic cancer, hypercholester-

emia, atherosclerosis, pancreatitis, psoriasis, chronic anterior uveitis and arthritis. Thus,

curcumin, a spice once relegated to the kitchen shelf, has moved into the clinic and may

prove to be ‘‘Curecumin’’.
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N1. Introduction

Natural plant products have been used throughout human

history for various purposes. Having coevolved with life, these

natural products are billions of years old. Tens of thousands of

them are produced as secondary metabolites by the higher

plants as a natural defense against disease and infection.
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Medicines derived from plants have played a pivotal role in the

health care of many cultures, both ancient and modern [1–5].

The Indian system of holistic medicine known as Ayurveda

uses mainly plant-based drugs or formulations to treat various

ailments including cancer. Of the approximately 877 small-

molecule drugs introduced worldwide between 1981 and 2002,

most (61%) can be traced back to their origins in natural

products [1]. This is not surprising since plant-based drugs
recumin’’: From kitchen to clinic, Biochem Pharmacol (2007),
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may be more suitable – at least in biochemical terms – for

medicinal human use than the many exotic synthetic drugs

produced through combinatorial chemistry. Nonetheless,

modern medicine has neither held in very high esteem nor

encouraged the medicinal use of natural products.

Over the last two decades, however, successful attempts to

better understand molecular mechanisms of action of some

natural products have kindled interest in their therapeutic use

in modern medical settings. Remarkably, most of the natural

products experimentally evaluated so far have been found to

be nontoxic or to have effective doses far below their toxic

doses. The role of natural products in human health care

cannot be underestimated. An estimated 80% of individuals in

developing countries depend primarily on natural products to

meet their healthcare needs [6]. Recent surveys suggest that

one in three Americans uses medicinal natural products daily

and that possibly one in two cancer patients (i.e., up to 50% of

patients treated in cancer centers) uses them as well. The

current review is limited to curcumin, a natural product in use

for thousands of years

Curcumin (diferuloylmethane), a polyphenol, is an active

principle of the perennial herb Curcuma longa (commonly

known as turmeric) (Fig. 1). The yellow-pigmented fraction of
U
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Fig. 1 – Isolation, extraction, and structure of curcumin. Curcum

sold in the market are shown. The change in color of turmeric at

(THC), a major metabolite of curcumin, exhibits whitish color. A

The traditional Kumkum, or Kungumam as it is called in Tamil

dried and powdered with a bit of slaked lime, which turns the

called Bindi, Bindu, Tilak or Sandoor) is an auspicious symbol. W

respect (in case of an elderly lady) or blessings (in case of a youn

is also widely used for worshipping the Hindu goddesses, espe

references to colour in this figure legend, the reader is referred
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turmeric contains curcuminoids, which are chemically related

to its principal ingredient, curcumin. The major curcuminoids

present in turmeric are demethoxycurcumin (curcumin II),

bisdemethoxycurcumin (curcumin III), and the recently

identified cyclocurcumin [7]. The major components of

commercial curcumin are curcumin I (�77%), curcumin II

(�17%), and curcumin III (�3%). The curcuminoid complex is

also referred to as Indian saffron, yellow ginger, yellow root,

kacha haldi, ukon, or natural yellow 3. Curcuminoids are

present in 3–5% of turmeric. Though principally cultivated in

India, Southeast Asia, China, and other Asian and tropical

countries and regions, turmeric is also common in other parts

of the world and is recognized by different names in different

languages worldwide (Table 1). [8]

Curcumin was first isolated in 1815, obtained in crystalline

form in 1870 [9,10], and ultimately identified as 1,6-hepta-

diene-3,5-dione-1,7-bis(4-hydroxy-3-methoxyphenyl)-(1E,6E)

or diferuloylmethane. In 1910, the feruloylmethane skeleton

of curcumin was confirmed and synthesized by Lampe [11].

Curcumin is a yellow-orange powder that is insoluble in water

and ether but soluble in ethanol, dimethylsulfoxide, and

acetone. Curcumin has a melting point of 183 8C, a molecular

formula of C21H20O6, and a molecular weight of 368.37 g/mol.
C
TE

D

in capsules, pills, lozogens, band-aid and cream commonly

acidic and alkaline pH is also shown. Tetrahydrocurcumin

lkaline turmeric (red color) is also referred as ‘‘Kumkum’’.

Nadu (India), is made from dried turmeric. The turmeric is

rich yellow powder into red color. The kungumam (also

hen a girl or a married woman visits a house, it is a sign of

g girl) to offer kumkum to them when they leave. Kumkum

cially Shakti and Lakshmi. (For interpretation of the

to the web version of the article.)
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Table 1 – Various names of turmeric/curcuminQ16 in
different languages

Language Name

Arabic Kurkum, Uqdah safra

Armenian Toormerik, Turmerig

Assamese Halodhi

Bengali Halud

Bulgarian Kurkuma

Burmese Hsanwen, Sanwin, Sanae,

Nanwin

Catalan Cúrcuma

Chinese Yu chin, Yu jin, Wohng geung,

Geung wohng, Wat gam,

Huang jiang, Jiang huang, Yu jin,

Yu jin xiang gen

Croatian Indijski šafran, Kurkuma

Czech Kurkuma, Indický Šafrán, Žlutý kořen,

Žlutý zázvor

Dhivehi Reen’dhoo

Danish Gurkemeje

Dutch Geelwortel, Kurkuma

Tarmeriek, Koenjit, Koenir

English Indian saffron

Esperanto Kurkumo

Estonian Harilik kurkuma, Kurkum,

Pikk kollajuur, Lõhnav kollajuur,

Harilik kurkuma, Kurkum,

Pikk kollajuur, Lõhnav kollajuur

Farsi Zardchubeh

Finnish Kurkuma, Keltajuuri

French Curcuma, Safran des Indes,

Terre-mérite, Souchet des Indes

Galician Cúrcuma

German Curcuma, Kurkuma,

Indischer Safran, Gelbwurz

Greek Kitrinoriza, Kourkoumi,

Kourkoumas

Gujarati Halad, Haldar

Hebrew Kurkum

Hindi Haldi

Hungarian Kurkuma, Sárga gyömbérgyökér

Icelandic Túrmerik

Indonesian Kunyit, Kunir; Daun kunyit

Italian Curcuma

Japanese Ukon, Tamerikku

Kannada Arishina, Arisina

Khmer Romiet, Lomiet, Lamiet

Korean Kang-hwang, Keolkuma Kolkuma,

Sim-hwang, Teomerik, Tomerik,

Tumerik, Ulgum, Ulgumun

Laotian Khi min khun, Khmin khün

Latvian Kurkuma

Lithuanian Ciberžole˙, Kurkuma,

Dažine˙ ciberžole˙

Malay Kunyit basah

Malayalam Manjal

Marathi Halad

Nepali Haldi, Hardi, Besar

Norwegian Gurkemeie

Pahlavi Zard-choobag

Pashto Zarchoba

Polish Kurkuma, Ostryz˙ długi,

Szafran indyjski

Portuguese Açafrão da Índia, Curcuma

Punjabi Haldi

Romanian Curcuma˘

Russian Koren, kurkumy, Kurkuma

Table 1 (Continued )
Language Name

Sanskrit Ameshta, bahula, bhadra, dhirgharaja,

gandaplashika, gauri, gharshani, haldi,

haridra, harita, hemaragi, hemaragini,

hrivilasini, jayanti, jwarantika, kanchani,

kaveri, krimighana, kshamada, kshapa,

lakshmi, mangalaprada, mangalya,

mehagni, nisha, nishakhya, nishawa,

pavitra, pinga, pinja, pita, patavaluka,

pitika, rabhangavasa, ranjani,

ratrimanika, shifa, shiva, shobhana,

shyama, soughagouhaya, suvarna,

suvarnavarna, tamasini, umavara,

vauragi, varavarnini, varnadatri, varnini,

vishagni, yamini, yohitapriya, yuvati

Singhalese Kaha

Slovak Kurkuma

Slovenian Kurkuma

Spanish Cúrcuma, Azafrán arabe

Swahili Manjano

Swedish Gurkmeja

Tagalog Dilaw

Tamil Manjal

Telugu Haridra, Pasupu

Thai Kha min chan, Kha min; Wanchakmadluk

Tibetan Gaser, Sga ser

Turkish Hint safranı, Sarı boya, Zerdeçal,

Safran kökü, Zerdali, Zerdeçöp, Zerdecube

Ukrainian Kurkuma

Urdu Haldi, Zard chub

Vietnamese Bot nghe, Cu nghe, Nghe, Uat kim,

Khuong hoang

Yiddish Kurkume

Modified from Ravindran et al. [8].
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Spectrophotometrically, the maximum absorption (lmax) of

curcumin in methanol occurs at 430 nm and in acetone at 415–

420 nm [12]. A 1% solution of curcumin contains 1650

absorbance units. Curcumin appears brilliant yellow hue at

pH 2.5–7 and red at pH > 7. Curcumin exists in enolic and b-

diketonic forms. The fact that curcumin in solution exists

primarily in its enolic form [13] has an important bearing on

the radical-scavenging ability of curcumin.

The stability of curcumin in aqueous media improves at

high pH (>11.7) [14,15]. Although quite soluble in organic

solvents such as DMSO, ethanol, methanol, or acetone, it is

poorly soluble in aqueous solvents [16]. Curcumin is stable at

acidic pH but unstable at neutral and basic pH, under which

conditions it is degraded to ferulic acid and feruloylmethane

[15–17]. Most curcumin (>90%) is rapidly degraded within

30 min of placement in phosphate buffer systems of pH 7.2

[15,17]. The ability of antioxidants such as ascorbic acid, N-

acetylcysteine (NAC), and glutathione to prevent this degrada-

tion suggests that an oxidative mechanism is at work.

Degradation of curcumin is extremely slow at pH 1–6 [15],

as normally encountered in the stomach. In contrast, one of

curcumin’s major metabolites (tetrahydrocurcumin, or THC)

is quite stable at neutral or basic pH [18] and still possesses

antioxidant activities [19–21]. Curcumin is soluble in 0.1 M

sodium hydroxide, although it remains stable for only 1–2 h. In

comparison, curcumin is more stable in cell culture medium
recumin’’: From kitchen to clinic, Biochem Pharmacol (2007),
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Table 2 – A list of molecular targets of curcumin

Transcriptional factors

Activating protein-1#
b-Catenin#
CREB-binding protein#
Early growth response gene-1#
Electrophile response element"
Hypoxia inducible factor-1#
Notch-1#
Nuclear factor-kappa B#
Nuclear factor 2-related factor"
Peroxisome preoliferator-activated receptor-gamma"
Signal transducers and activators of transcription-1#
Signal transducers and activators of transcription-3#
Signal transducers and activators of transcription-4#
Signal transducers and activators of transcription-5#
Wilms’ tumor gene 1#

Inflammatory cytokines

Interleukin-1#
Interleukin-2#
Interleukin-5#
Interleukin-6#
Interleukin-8#
Interleukin-12#
Interleukin-18#
Monocyte chemoattractant protein#
Migration inhibition protein#
Macrophage inflammatory protein#
Tumor necrosis factor alpha#

Enzymes

Arylamine N-acetyltransferases-1#
ATFase#
ATPase#
Cyclooxygenase-2#
Desaturase#
DNA polymerase#
Farnesyl protein transferase#
Gluthathione-S-transferase"
Glutamyl cysteine ligase

Hemeoxygenase-1"
Inducible nitric oxide synthase#
Lipoxygenase#
Matrix metalloproteinase#
NAD(P)H:quinone oxidoreductase#
Ornithine decarboxylase#
Phospholipase D#
Src homology 2 domain-containing tyrosine phosphatase 2"
Telomerase#
Tissue inhibitor of metalloproteinase-3#
Glutamate-cysteine ligase"

Kinases

Autophosphorylation-activated protein kinase#
Ca2+-dependent protein kinase#
EGF receptor-kinase#
Extracellular receptor kinase#
Focal adhesion kinase#
IL-1 receptor-associated kinase#
Janus kinase#
c-jun N-terminal kinase"
Mitogen-activated protein kinase#
Phosphorylase kinase#
Protamine kinase#
Protein kinase A#
Protein kinase B#
Prorein kinase C#
pp60c-src tyrosine kinase#
Protein tyrosine kinase#

Table 2 (Continued )

Growth factors

Connective tissue growth factor#
Epidermal growth factor#
Fibroblast growth factor#
Hepatocyte growth factor#
Nerve growth factor#
Platelet derived growth factor#
Tissue factor#
Transforming growth factor-b1#
Vascular endothelial growth factor#

Receptors

Androgen receptor#
Aryl hydrocarbon receptor#
Chemokine (C-X-C motif) receptor 4#
Death receptor-5"
EGF-receptor#
Endothelial protein C-receptor"
Estrogen receptor-alpha#
Fas receptor"
Histamine (2)- receptor#
Human epidermal growth factor receptor-2#
Interleukin 8-receptor#
Inositol 1,4,5-triphosphate receptor#
Integrin receptor#
Low density lipoprotein-receptor"

Adhesion molecules

Endothelial leukocyte adhesion molecule-1#
Intracellular adhesion molecule-1#
Vascular cell adhesion molecule-1#

Antiapoptotic proteins

B-cell lymphoma protein 2#
Bcl-xL#
Inhibitory apoptosis protein-1 #

Others

Cyclin D1#
DNA fragmentation factor 40-kd subunit"
Heat-shock protein 70"
Multi-drug resistance protein#
Urokinase-type plasminogen activator#
P53"

For more information, see Ref. [43,44].
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containing 10% fetal calf serum and in human blood, <20% of

curcumin being degraded within 1 h and approximately 50%

by 8 h [15]. trans-6-(40-Hydroxy-30-methoxyphenyl)-2,4-dioxo-

5-hexenal is a major degradation product; vanillin, ferulic

acid, feruloylmethane are minor degradation products Q. The

amount of vanillin increases with incubation time. In addition,

curcumin appears to be stabilized by forming complexes with

cyclodextrin [22].

2. Traditional uses of curcumin

Traditionally, turmeric has been put to use as a foodstuff,

cosmetic, and medicine. As a spice, it is used to provide curry

with its distinctive yellow color and flavor. It is used a coloring

agent in cheese, butter, and other foods [23,24]. In folk

medicine, turmeric and natural curcuminoids have been

applied as therapeutic preparations over the centuries in

different parts of the world. In Ayurvedic medicine, curcumin
recumin’’: From kitchen to clinic, Biochem Pharmacol (2007),
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Table 3 – Ligands that physically interact with curcumin

Albumin [45–49]

Alfa-acid glycoprotein [50]

Amyloid protein [51]

ATPase [52,53]

Autophosphorylation-activated protein kinase (AK) [54]

CD13/aminopeptidase N [55]

DNA polymerase-Y [56]

Focal adhesion kinase [57]

Glutathione [58]

GST-P1 [60]

HER2 [61]

Human alpha1-acid glycoprotein (AGP) [50]

Iron, Cu2+, Zn2+ [62,53]

Lipoxygenase [64,65]

Microtubulin [66]

MRP 1 and 2 [59]

Nucleic acid [67]

P-glycoprotein [68–70]

Phosphorylase kinase (PhK), [54]

Protein kinase A (PkA), [54]

Protein kinase C (PkC), [54]

Protamine kinase (cPK), [54]

pp60c-src tyrosine kinase [54,57]

Thioredoxin reductase [71]

Topoisomerase II [72]

Ubiquitin isopeptidase [73]
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is a well-documented treatment for various respiratory

conditions (e.g., asthma, bronchial hyperactivity, and allergy)

as well as for liver disorders, anorexia, rheumatism, diabetic

wounds, runny nose, cough, and sinusitis [25]. In traditional

Chinese medicine, it is used to treat diseases associated with

abdominal pain [26]. In ancient Hindu medicine, it was used to

treat sprains and swelling [25]. Throughout the Orient, it has

traditionally been used to good therapeutic effect, particularly

as an anti-inflammatory [12], and many of its therapeutic

effects have been confirmed by modern scientific research.

Such effects include antioxidant [27], anti-inflammatory

[24,28,29], anticarcinogenic and antimicrobial [30–32], hepa-

toprotective [32], thrombosuppressive [33], cardiovascular

(i.e., as protection against myocardial infarction) [29,34,35],

hypoglycemic [36–38], and antiarthritic (i.e., as protection

against rheumatoid arthritis) [39], The most compelling and

key rationale for the continuing traditional therapeutic use of

curcumin is its extremely good safety profile. To date, no

studies in either animals [40,41] or humans [42] have

discovered any toxicity associated with the use of curcumin,

and it is clear that curcumin is not toxic even at very high

doses.

3. Molecular targets of curcumin

Accumulating evidence suggests that curcumin has a diverse

range of molecular targets, which supports the notion that

curcumin influences numerous biochemical and molecular

cascades (Table 2). Among its molecular targets are transcrip-

tion factors, growth factors and their receptors, cytokines,

enzymes, and genes regulating cell proliferation and apopto-

sis.

3.1. Curcumin interacts with numerous targets

Curcumin is apparently a highly pleiotropic molecule that

interacts physically with its numerous targets (Table 3). It

binds to and inhibits the activity of enzymes, growth factor

receptors, metals, albumin, and other molecules. It binds

proteins such as P-glycoprotein [68,69], multidrug resistance

proteins 1 and 2 (MRP1 and MRP2) [59], glutathione [59], protein

kinase C, ATPase [52,53], ErbB2 [61], and alpha1-acid glyco-

protein (AGP) [50]. By directly binding small b-amyloid species,

curcumin blocks aggregation and fibril formation in vitro and

in vivo [51]. Curcumin irreversibly binds CD13/aminopepti-

dase N (APN) and inhibits tumor invasion and angiogenesis

[55]. Curcumin has also been shown to inhibit the activity of

lipoxygenase by binding lipoxygenase itself [65] or binding to

phosphatidylcholine (PC) micelles and thereby inhibiting

lipoxygenase 1 [74].

3.2. Curcumin inhibits activation of transcription factors

Curcumin is a potent inhibitor of the activation of various

transcription factors including nuclear factor-kB (NF-kB),

activated protein-1 (AP-1), signal transducer and activator of

transcription (STAT) proteins, peroxisome proliferator-acti-

vated receptor-g (PPAR-g), and b-catenin [44]. These transcrip-

tion factors regulate the expression of genes that contribute to
Please cite this article in press as: Goel A, et al., Curcumin as ‘‘Cu
doi:10.1016/j.bcp.2007.08.016
TE
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tumorigenesis, inflammation, cell survival, cell proliferation,

invasion, and angiogenesis.

3.3. Curcumin downregulates the activity of multiple
kinases

A variety of tyrosine kinases are activated by mutations that

contribute to the malignant transformation, growth, and

metastasis of human cancers. Accordingly, protein kinases

involved in key growth signaling cascades are good candidate

targets for novel chemopreventive approaches to treat many

human cancers. For example, most human cancers over-

express epidermal growth factor receptor (EGFR) and HER2/

neu, which ultimately stimulates the proliferation of cancer

cells [75]. Cellular experiments in vitro have shown that short-

term treatment with curcumin inhibits EGFR kinase activity

and EGF-induced tyrosine phosphorylation of EGFR in A431

cells and depletes cells of Her2/neu protein. Similar to

geldanamycin, curcumin is extremely potent at degrading

intracellular HER2 and disrupting its tyrosine kinase activity

[76]. Additionally, as recently shown in our laboratory,

curcumin may downregulate bcl-2 expression, thereby con-

tributing to antiproliferative activity. Curcumin has also been

shown to induce apoptosis in acute T cell leukemias by

inhibiting the phosphatidylinositol 3 kinase/AKT pathway and

to induce G2/M arrest and nonapoptotic autophagic cell death

in malignant glioma cells by abrogating Akt and Erk signaling

pathways [77].

Curcumin’s effects are also apparently mediated through

its inhibition of various other serine/threonine protein

kinases. As we have previously shown, curcumin completely

inhibits the activity of several protein kinases including

phosphorylase kinase, protein kinase C (PKC), protamine

kinase (cPK), autophosphorylation-activated protein kinase
recumin’’: From kitchen to clinic, Biochem Pharmacol (2007),
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(AK), pp60c-src tyrosine kinase. Other investigators have

shown similar suppression of phorbol-12-myristate-13-acet-

ate (PMA)-induced activation of cellular PKC by curcumin

[43,44].

Most inflammatory stimuli typically activate 1 of 3

independent MAPK pathways leading to activation of the

p44/42 MAPK (also called ERK1/ERK2), JNK, or p38 MAPK

pathway, respectively. Curcumin can apparently inhibit all of

these pathways directly or indirectly, thus providing evidence

of its potent anti-inflammatory and anticarcinogenic effects

[43,44].

3.4. Curcumin inhibits expression of growth and
metastases promoting genes

Overexpression of oncogenes promotes tumor cell growth and

provides an ideal platform on which to design chemopreven-

tive regimens. Cyclooxygense-2 (COX-2) is associated with a

wide variety of cancers including cancers of the colon, lung

and breast. Because of the importance of COX-2 inhibition in

human carcinogenesis, much research in the past decade has

been focused on the development of specific COX-2 inhibitors

[78]. Several studies have shown that curcumin downregulates

the expression of COX-2 protein in different tumor cell lines,

most likely through the downregulation of NF-kB activation

that is required for COX-2 activation. There is also evidence in

the literature that curcumin-induced suppression of cell

proliferation results in decreased cyclin D1 expression and

CDK4-mediated retinoblastoma protein phosphorylation. As

shown in hepatocellular cancer cells, curcumin appears to

alter the metastatic potential of tumor cells by inhibiting the

activity of matrix metalloproteinase-9 (MMP-9) and MMP-2

[79]. In experiments with ex vivo cultured BALB/c mouse

peritoneal macrophages, curcumin reduced the production of

iNOS mRNA in a concentration-dependent manner. Finally,

curcumin appears to be able to exert anti-inflammatory and

growth-inhibitory effects on cancer cells by inhibiting the

expression of interleukin 1b (IL-1b), interleukin 6 (IL-6), and

tumor necrosis factor-a (TNF-a) on the one hand and cyclin E

on the other [80,81].

3.5. Curcumin inhibits expression of multiple genes/
pathways involved in apoptosis, cell invasion, and adhesion

Curcumin also operates through regulating the activities of

additional molecular targets that control cell adhesion,

apoptosis, and invasion. In this regard, curcumin has been

shown to be an extremely potent inhibitor of TNF-a-induced

expression of intracellular cell adhesion molecule-1 (ICAM-1),

vascular cell adhesion molecule-1 (VCAM-1), and E-selectin in

human umbilical vein endothelial cells. By apparently

inhibiting the induction of steady-state transcription levels

of ICAM-1, VCAM-1 and E-selectin, curcumin may be inter-

fering detrimentally with the TNF-a-induced signaling event

at an early stage. Additionally, curcumin has been shown to

mediate its anticancer, chemosensitive, and radiosensitive

effects via activation of p53 and simultaneous downregulation

of MDM2 oncogene expression via the PI3K/mTOR/ETS2

pathway in human prostate cancer (PC3) and colon cancer

(HT-29) cell lines [82,83] and to induce apoptosis and nuclear
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translocation and activation of p53 in human neuroblastoma

cells [84].

3.6. Curcumin regulates activities of several enzymes that
mediate tumor growth

In addition to directly regulating the expression of candidate

genes, curcumin also appears to effectively regulate the

activities of enzymes that control tumor growth and prolif-

eration. Curcumin blocks fibrosis in anti-Thy1 glomerulone-

phritis through its upregulation of hemoxygenase-1 (HO-1)

gene expression, suggesting that it has antifibrotic effects in

glomerular disease [85]. Similarly, curcumin can reportedly

induce HO-1 expression through the generation of reactive

oxygen species, p38 activation, and phosphatase inhibition

[86].

Curcumin can also apparently suppress tumor cell growth

through its effects on Ras protein pathways. Ras proteins, in

order to extend their biological activity, must be isoprenylated

at a conserved cysteine residue near the carboxyl terminus

(Cys-186 in mammalian Ras p21 proteins). Previous studies

have indicated that an intermediate in the mevalonate

pathway, most likely farnesyl pyrophosphate, donates this

isoprenyl group and that inhibitors of the mevalonate path-

way might be able to block the transforming effects of Ras

oncogenes expression. Indeed, in one study evaluating such a

role for curcumin, curcumin derivatives strongly inhibited

FPTase activity, thereby suggesting another potential mechan-

ism by which curcumin might suppress cellular growth [43,44].

In another investigation, curcumin remarkably inhibited

the activity of xanthine oxidase (XO) in vitro in PMA-treated

NIH3T3 cells. Induction of XO activity is considered a major

cause of PMA-mediated tumor promotion, and curcumin’s

marked ability to inhibit PMA-induced increases in such

activity appears to lie in its direct inactivation of the XO

protein [43,44].

4. Preclinical studies of curcumin

4.1. Curcumin is a potent chemopreventive agent

Numerous studies in rodent models argue for curcumin’s

chemopreventive potential in cancer (Table 4). Curcumin can

reportedly suppress the tumorigenic activity of a wide variety

of carcinogens in cancers of the colon, duodenum, esophagus,

forestomach, stomach, liver, breast, leukemia, oral cavity, and

prostate. In studies in mice, curcumin was able to inhibit 7,12-

dimethylbenz[a]anthracene (DMBA)-initiated and 12-O-tetra-

decanoylphorbol-13-acetate (TPA)-promoted skin tumor for-

mation [31,120,126]. Curcumin has also shown an ability to

inhibit the mammary tumor-initiating activity of DMBA [110]

and the in vivo formation of mammary DMBA–DNA adducts in

female rats [111] and to exert chemopreventive activity when

administered during the promotion/progression stage of colon

carcinogenesis [91]. Meanwhile, one group has studied not

only curcumin’s chemopreventive effects but also its effects

on the initiation or post-initiation phase of N-nitrosomethyl-

benzylamine (NMBA)-induced esophageal carcinogenesis in

male F344 rats [100]. Using a slightly different approach,
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http://dx.doi.org/10.1016/j.bcp.2007.08.016


U
N

C
O

R
R

E
C

TE
D

 P
R

O
O

F

Table 4 – Curcumin exhibits chemopreventive effects against various cancers

Cancer Carcinogen Animal Dose Reference

Gastrointestinal cancers

Aberrant crypt foci (ACF) Azoxymethane Rat 2000 ppm [87]

Colon cancer Azoxymethane Mice 0.5–0.2% (w/w) [88]

Colon cancer DMH Mice 0.5% [89]

Colon cancer Azoxymethane Rat 2000 ppm [90]

Colon cancer Azoxymethane Rat 0.2 or 0.6% (w/w) [91]

Colon cancer PhIP Apc (min) mice 2000 ppm [92]

Colon cancer Azoxymethane Rat 1 or 2% (w/w) [93]

Colon cancer Azoxymethane Rat 0.6% (w/w) [94]

Colon cancer 1,2-Dimethylhydrazine Rat 0.6% [95]

Colitis TNBS Mice 0.5–5%, diet [96]

Colitis DNB Mice 0.25%; diet [97]

Colitis TNBS Mice 50 mg/kg [98]

Ulcerative colitis DNCB Rat 25–100 mg/kg [99]

Duodenal tumor MNNG Mice 0.5–2.0% (w/w) [88]

Esophageal cancer NMBA Rat 500 ppm [100]

FAD Azoxymethane Mice 2% [101]

FAP – Min/+ mice 0.1, 0.2 or 0.5% (w/w) [102]

Forestomach neoplasia B[a]P Mice [103]

Forestomach cancer B[a]P Mice 2% (w/w) [104]

Forestomach neoplasia B[a]P Mice [105]

Stomach cancer MNNG Rat 0.05% (w/w) [106]

Liver cancers

Hepatic hyperplasia Diethylnitrosamine Rat 200 or 600 mg/kg [107]

Liver cancer Diethylnitrosamine Mice 0.2% (w/w) [107]

Lung cancers

Lung cancer B[a]P and NNK A/J mice 2000 ppm [108]

Blood cancers

Lymphoma/leukemia DMBA Sencar mice 2% (w/w) [109]

Breast cancers

Mammary tumor DMBA Rat 0.8–1.6% (w/w) [93]

Mammary tumor DMBA Rat 50–200 mg/kg [110]

Mammary tumor DMBA Rat 1% (w/w) [111]

Mammary tumor DMBA Sencar mice 2% (w/w) [109]

Mammary tumor Gamma radiation Rat [112]

Mammary tumor Gamma radiation Rat 1% (w/w) [113]

Mammary tumor DMBA Rats [114]

Mammary tumor DMBA Sencar mice [115]

Mammary tumor Gamma radiation Rat [113]

Oral cancers

Oral cancer MNA Hamster [116]

Oral cancer NQO Rat 500 ppm [117]

Prostate cancers

Prostate cancer DMAB and PhIP Rat 15–500 ppm [118]

Skin cancers

Dermatitis TPA + UV-A Mice [119]

Skin tumor TPA Mice [120]

Skin tumor DMBA Mice [103]

Skin tumors TPA Mice 10 and 30 mmol [121]

Skin tumor TPA Mice [122]

Skin tumor TPA Mice 1, 10, 100 or 3000 nmol [123]

Skin tumor Mice [124]

Skin tumor DMBA Mice [105]

Skin tumor B[a]P and DMBA Mice [101]

Other cancers

Multi-organ cancer DHPN, EHEN Rat 1% (w/w) [125]

Abbreviations: FAP, familial adenomatous polyposis; ACF, aberrant crypt foci; FAD, focal areas of dysplasia; B[a]P, benzo[a]pyrene; DMBA, 7,12-

dimethylbenz[a]nthracene; TPA, 12-O-tetradecanoylphorbol-13-acetate; NNK, 4-(methyl-nitrosamino)-I-(3-pyridyl)-1-butanone; NQO, 4-

nitroquinoline-1-oxidase; DMAB, 3,20-dimethyl-4-aminobiphenol; PhIP, 2-amino-1-methylimidazo[4,5-b]pyridine; DHPN, 2,20-dihydroxy-di-n-

propylnitrosamine; EHEN, N-ethyl-N-hydroxyethylnitrosamine.

b i o c h e m i c a l p h a r m a c o l o g y x x x ( 2 0 0 7 ) x x x – x x x 7

BCP 9563 1–23

Please cite this article in press as: Goel A, et al., Curcumin as ‘‘Curecumin’’: From kitchen to clinic, Biochem Pharmacol (2007),

doi:10.1016/j.bcp.2007.08.016

http://dx.doi.org/10.1016/j.bcp.2007.08.016


E

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

b i o c h e m i c a l p h a r m a c o l o g y x x x ( 2 0 0 7 ) x x x – x x x8

BCP 9563 1–23
another group investigated curcumin’s ability to prevent

tumors in C57BL/6J-Min/+ (Min/+) mice that bear a germline

mutation in the APC gene and spontaneously develop

numerous intestinal adenomas by 15 weeks of age [127].

The data obtained in that study were corroborated by a later

study of the effects of curcumin on apoptosis and tumorigen-

esis in male apc (min) mice treated with the human dietary

carcinogen 2-amino 1-methyl-6-phenylimidazo[4,5-b]pyridine

(PhIP) [92].

At least one study has examined curcumin’s preventive

effect on the development of adenomas in the intestinal tract

of C57BL/6J-Min/+ mice, a model of human familial adeno-

matous polyposis (FAP) [102]. Another group reported that,

during the initiation phases of azoxymethane-induced colonic

carcinogenesis, azoxymethane inhibits the expression of

colonic COX-1 expression without affecting that of COX-2

[128]. However, they also found that simultaneous treatment

with dietary curcumin may increase COX-2 expression to

compensate for the azoxymethane-induced reduction of COX-

1 expression.

In another recent study, the effects of curcumin adminis-

tered at a daily dose of 100 mg/kg were investigated in an

animal (Wistar rat) model of N-nitrosodiethylamine (DENA)-

initiated and phenobarbital (PB)-induced hepatocarcinogen-

esis [129]. In a recent follow-up study, the investigators in that

study have substantiated this finding by reporting that

100 mg/kg curcumin daily prevented the reduction of defen-

sive hepatic glutathione antioxidant activity, decreased lipid

peroxidation, and minimized the histological alterations

induced by DENA/PB [130]. In another study, investigators

found that the administration of curcumin and a synthetic

analog to nicotine-treated Wistar rats over a period of 22

weeks enhanced biochemical marker enzyme and lipid

profiles [131]. In a study in rodents, curcumin was able to

inhibit the development of N-methyl-N0-nitro-N-nitrosogua-

nidine (MNNG)-induced stomach cancer [106], an effect that
U
N

C
O

R
R

Table 5 – A list of studies describing antitumor effects of curc

Tumor Route Do

Ascites2 i.p. 50 mg/k

Ascites i.p. 50 mg/k

Breast1 Diet 2% (w/w

Breast1 Diet 1% (w/w

Colon2 i.v. 40 mg/k

Gastric cancer Oral 50–200 m

Gliobalstoma i.t. 10 mg/k

HCC3 100–200

Hepatoma Oral 50–200 m

HNSCC4 Sub cute 50–250 m

Leukemia Oral 50–200 m

Melanoma i.p. 25 mg/k

Ovarian i.p. 500 mg/

Pancreas2 i.v. 40 mg/k

Pancreas Gavage 1 gm/kg

Prostate Diet 2% (w/w

Prostate Gavage 5 mg/kg

Prostate Gavage 5 mg/da

1, Lung metastases; 2, liposomal curcumin; 3, intrahepatic metasta

hepatocellular carcinoma; HNSCC, head and neck squamous cell carcino
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may be mediated in part by an ability to suppress the

proliferation of Helicobacter pylori (the major pathogen in

human gastric cancer) [132].

4.2. Curcumin inhibits proliferation of tumor cells in vitro

Curcumin has the ability to inhibit the proliferation of an

extremely wide array of cancer cell types in vitro. This

includes cells from cancers of the bladder, breast, lung,

pancreas, prostate, cervix, head and neck, ovary, kidney, and

brain; and osteosarcoma, leukemia and melanoma [12].

4.3. Curcumin exhibits antitumor activity in animals

Besides the extensive in vitro demonstrations of curcumin’s

antiproliferative effects, numerous other studies have eval-

uated its efficacy in various animal models in vivo (Table 5).

The first animal studies of curcumin’s antitumor effects –

performed with ascitic lymphoma cells in mice – were

reported in 1985 by Kuttan et al. [133]. More recently, others

have studied the antitumoral and inhibitory effects of

curcumin on melanoma cells [141] and melanoma lung

metastasis in mice [147].

Other studies in vivo have investigated the effects of

curcumin on tumor angiogenesis and the biomarkers COX-2

and VEGF in hepatocellular carcinoma cells implanted in

nude mice [148]. One group demonstrated that systemic

administration of curcumin for 6 consecutive days to rats

bearing the highly cachectic Yoshida AH-130 ascites hepa-

toma significantly inhibited tumor growth [149]. Meanwhile,

others have shown that curcumin can suppress the growth of

head and neck carcinoma [140], modulate the growth of

prostate cancer in rodents [145], and inhibit the growth of

human pancreatic cancer in nude mice, in part by suppres-

sing angiogenesis and inducing apoptosis as reported

recently [143].
umin in animals

se Model Reference

g Ascites [133]

g Ascites [134]

) Orthotopic [135]

) Orthotopic [136]

g Xenograft [137]

g/kg Xenograft [138]

g Orthotopic [77]

mg/kg Orthotopic [139]

g/kg Xenograft [138]

mol/L Xenograft [140]

g/kg Xenograft [138]

g Xenograft [141]

kg Orthotopic [142]

g Xenograft [143]

Orthotopic [144]

) Xenograft [145]

IV [146]

y Xenograft [82]

sis; i.p., intraperitoneal; i.t., intratumoral; i.v., intravenous; HCC,

ma.
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More recent studies have evaluated curcumin’s chemo-

sensitizing and radiosensitizing effects. Our group [135]

evaluated the chemosensitizing effect of curcumin in combi-

nation with paclitaxel on breast cancer metastases to the lung.

Others examined the effects of curcumin on human breast

cancer (MDA-MB-231) cells in an immunodeficient mouse

model of metastasis [136] and observed that the number of

lung metastases significantly decreased after intercardiac

injection of curcumin, a clear demonstration of curcumin’s

promise for dietary chemoprevention of metastases [136].

In our laboratory, we have recently investigated curcumin’s

effects alone and in combination against several cancers. We

have found that (a) the combination of curcumin and

gemcitabine inhibits pancreatic cancer growth in nude mice

by inhibiting NF-kB regulated gene expression, cell prolifera-

tion, and angiogenesis [144]; (b) the combination of curcumin

and docetaxel is effective against human ovarian cancer in

nude mice [142]; (c) curcumin can suppress the growth of

human glioblastoma in rodents [77]; and (d) curcumin

sensitizes colon cancers in nude mice to oxaliplatin [137]. In

addition, other recent studies have shown that curcumin

sensitizes prostate cancers to chemotherapeutics and radia-

tion by downregulating expression of the MDM2 oncogene

[82]. Together, these in vivo animal studies clearly suggest

curcumin’s anticancer potential when administered either

alone or in combination with currently employed chemother-

apeutic agents or radiation.

5. Pharmacokinetic and pharmacodynamic
studies of curcumin in animals and humans

The pharmacokinetics and pharmacodynamics of curcumin

have been widely investigated. Perhaps the first study to

examine the uptake, distribution, and excretion of curcumin

was conducted in 1978 by Wahlstrom and Blennow in

Sprague-Dawley rats [150]. When administered orally at a

dose of 1 g/kg, approximately 75% of the ingested curcumin

was excreted in the feces and only negligible amounts in the

urine. As indicated by blood plasma levels and biliary

excretion, curcumin was poorly absorbed from the gut. No

apparent toxic effects were seen after doses of up to 5 g/kg.

When intravenously injected, curcumin was actively trans-

ported into the bile. Most of the drug was metabolized,

however, again suggesting poor absorption and rapid meta-

bolism. Later, Holder et al. [151] administered deuterium- and

tritium-labeled curcumin orally and intraperitoneally to rats

and, like Wahlstrom and Blennow, found that most of it was

excreted in the feces. When they administered curcumin

intravenously and intraperitoneally to cannulated rats, the

curcumin was excreted in the bile. The major biliary

metabolites were glucuronides of tetrahydrocurcumin (THC)

and hexahydrocurcumin (HHC); the minor biliary metabolite

was dihydroferulic acid accompanied by traces of ferulic acid.

In another study in which 400 mg curcumin was administered

orally to rats, most of the administered curcumin (40%) was

excreted unchanged in the feces, none in the urine (although

curcumin glucuronide and sulfates were detected there), and

none in heart blood (although traces were found in portal

blood, liver, and kidney) [152]. Thirty minutes after adminis-
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tration, 90% of the curcumin had appeared in the stomach and

small intestine; by 24 h, only 1% remained there [152]. In

another study by the same investigators, tritium-labeled

curcumin administered at doses of 400, 80, and 10 mg was

later detectable in theblood, liver,and kidney. At all three doses,

the labeled curcumin was eliminated mainly through the feces

and negligibly through the urine. At the two lowest doses (80

and 10 mg), most of the labeled curcumin was excreted within

72 h; conversely, at 400 mg, considerable amounts of labeled

curcumin were still present in the tissues of interest 12 days

after administration. The percentage of curcumin absorbed (60–

66% of the given dose) remained constant regardless of the dose

administered [153], indicating that increasing the dose of

curcumin did not necessarily result in higher absorption.

In 1999, Pan et al. [18] investigated the pharmacokinetics of

curcumin in mice. They found that, within the first 15 min

after intraperitoneal (i.p.) administration of curcumin (0.1 g/

kg), plasma curcumin levels had already reached 2.25 mg/mL

(Fig. 2) Q. One hour after administration, curcumin levels in the

intestines, spleen, liver, and kidneys had reached 177.04,

26.06, 26.90, and 7.51 mg/g, respectively, but only trace levels

(0.41 mg/g) in the brain. In comparison, after oral administra-

tion of 1 g/kg curcumin, serum plasma levels peaked at 0.5 mM.

Pan et al. also found curcumin-glucuronoside, dihydrocurcu-

min-glucuronoside, THC-glucuronoside, and THC to be the

major metabolites of curcumin in vivo. Together, these results

agree with those of Ireson et al. [154,155], who examined

curcumin metabolites in both rats and humans. As several

groups have shown, the liver appears to be the major organ

responsible for metabolism of curcumin [150,156,157]. Exam-

ining rat liver tissue slices for the presence of curcumin

metabolites, Hoehle and coworkers observed several reductive

metabolites including THC, HHC, and octahydrocurcumin

(OHC) and noted a predominance of OHC in males versus THC

in females. They also identified both glucuronide and sulfate

conjugates of THC, HHC, and OHC. This suggests that

curcumin undergoes extensive reduction, most likely via

alcohol dehydrogenase, before conjugation. In a Min/+ mouse

model of FAP, Perkins et al. [102] examined the pharmacoki-

netics of curcumin administered either in the diet or in 14C-

labeled form as a single intraperitoneal dose. Though detected

in only trace amounts in the plasma, curcumin was detected at

levels ranging from 39 to 240 nmol/g in the small intestinal

mucosa. The radiolabled curcumin disappeared rapidly from

tissues and plasma within 2–8 h after dosing. On the basis of

their findings, Perkins et al. concluded that a daily dose of 1.6 g

of curcumin is required for efficacy in humans. More recently,

in a study examining the tissue distribution of radiolabeled

fluoropropyl-substituted curcumin mice, Ryu et al. found that

curcumin bound to b-amyloid plaques in the brain, thereby

suggesting its possible use for brain imaging (Fig. 2) [158].

Pharmacokinetic studies in humans have generally pro-

duced similar data though not always. In contrast to the case in

rodents,oraldosing ofcurcuminat4–8 g inone study resulted in

peak plasma levels of 0.41–1.75 mM [159]. In a small study of 15

patients given oral curcumin (36–180 mg) daily for up to 4

months, metabolites were not detected in the blood or urine but

were detected in the feces [160]. In another study, Garcea et al.

[161] examined the pharmacologically active levels of curcumin

in patients with colorectal cancer who ingested curcumin at
recumin’’: From kitchen to clinic, Biochem Pharmacol (2007),

http://dx.doi.org/10.1016/j.bcp.2007.08.016


U
N

C
O

R
R

E
C

TE
D

 P
R

O
O

F

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

Fig. 2 – Plasma and tissue distribution of curcumin administered via intraperitoneal (i.p.) and systemic routes.

(A) Curcumin (0.1 g/kg) was administered (i.p.) to mice (N = 5), sacrificed 1 h later and concentration of curcumin

in various tissues was analysed by HPLC. The data is replotted from [18]. (B) ICR mice were injected with [18F]

labeled curcumin in 0.2 mL of 10% ethanol-saline via tail vein. The mice were sacrificed at the indicated times (2, 30,

60, and 120 min). Samples of blood, heart, lung, liver, spleen, kidney, muscle, brain, and bone were removed,

weighed, and counted. Data are expressed as the percent injected dose per gram of tissue (% ID/g). The data is replotted

from [158].
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daily doses of 3600, 1800, or 450 mg for 7 days. By measuring

curcumin’s effects on the colorectal levels of DNA adduct 3-(2-

deoxy-b-di-erythro-pentafuranosyl)-pyr[1,2-a]-purin-

10(3H)oneM(1)G and COX-2 protein, theyshowedthatcurcumin

was taken up by both normal and malignant colorectal tissues

and that it decreased M(1)G but not COX2 levels.

As most of these studies indicate, curcumin has poor

bioavailability, and several groups have investigated ways to

enhance it. Piperine has been shown to significantly enhance

curcumin’s bioavailability in studies involving both rats and

healthy human volunteers. In brief, Shoba et al. [162]

combined curcumin with piperine, a known inhibitor of

hepatic and intestinal glucuronidation, and examined the

resulting serum levels of curcumin. In the rat studies,

administration of curcumin alone at a dose of 2 g/kg, resulted

in moderate serum concentrations over 4 h. In contrast,

concomitant administration with piperine 20 mg/kg increased

for a short period the serum concentration of curcumin,

significantly increased the time to maximum concentration

while significantly decreasing elimination half-life and clear-

ance, and increased bioavailability by 154%. In humans, on the

other hand, administration of curcumin alone resulted in

undetectable or trace amounts in the serum, whereas

concomitant administration with piperine 20 mg/kg produced

much higher concentrations and increased bioavailability by

an astonishing 2000%. In another study in rats, other

investigators found that a formulation of curcumin phospha-

tidylcholine given orally enhanced curcumin’s bioavailability

five-fold in plasma and in liver; but levels were lower in

gastrointestinal mucosa [163]. Meanwhile, other attempts to

increase the bioavailability of curcumin have been made,

including the use of liposomal curcumin [143], nanoparticles

of curcumin [164], and synthetic analogues of curcumin [165].

Whether curcumin metabolites are as active as curcumin

itself is not clear. Although most studies indicate that

curcumin glucuronides and THC are less active than curcumin

[154,166], others suggest otherwise [20,21,89,167–172]. The

differences in results so far are most likely due to the assays

employed. For example, the phenolic glucuronides of curcu-

min and its natural congeners, but not the parent compounds,

have been shown to inhibit the assembly of microtubule

proteins under cell-free conditions, implying that the glucur-

onides are chemically reactive [167].

6. Clinical studies of curcumin

In response to the growing mass of in vitro and in vivo

evidence for curcumin’s chemopreventive and therapeutic

efficacy, a number of clinical trials over the past two and a half

decades have addressed the pharmacokinetics, safety, and

efficacy of curcumin in humans (Table 6). Although these trials

have concerned numerous inflammatory diseases including

cancer, our focus in the sections to come will be on those

dealing with cancers.

6.1. Curcumin is extremely safe and well tolerated

The potential use of curcumin in chemopreventive or

therapeutic settings has raised the obvious issues of toxicity
Please cite this article in press as: Goel A, et al., Curcumin as ‘‘Cu
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and tolerance. At least three different phase I clinical trials

indicate that curcumin is well tolerated when taken at doses

as high as 12 g/day [159,162] (Table 6). These results were

recently confirmed in an elegant dose-escalation trial to

determine curcumin’s maximum tolerated dose and safety

[193]. In that trial, a standardized powder extract of uniformly

milled curcumin (C3 ComplexTM, Sabinsa Corporation), was

administered to 24 healthy volunteers at single doses ranging

from 500 to 12,000 mg. Remarkably, only minimal, non-dose-

related toxicity was seen and then only in seven subjects

(30%). No curcumin was detected in the serum of subjects

administered 500, 1000, 2000, 4000, 6000 or 8000 mg and only

low levels in two subjects administered 10,000 or 12,000 mg.

6.2. Curcumin has anti-inflammatory and antirheumatic
activity

Rheumatoid arthritis is a frequent complication in the elderly,

and most treatments aim at reducing the temporary symp-

toms attributable to the underlying inflammatory activity

[194]. The need for new treatment approaches has led to the

recent introduction of potent disease-modifying antirheu-

matic drugs (DMARDs), whose clinical benefits are unfortu-

nately offset by their high cost and frequently undesirable side

effects. Curcumin has been considered as an alternative.

In the first clinical trial of curcumin’s efficacy as an

antirheumatic, investigators compared its antirheumatic

potential with that of phenylbutazone in a short-term,

double-blind, crossover study involving 18 relatively young

patients (age range, 22–48 years) [39]. Each subject received a

daily dose of either curcumin (1200 mg) or phenylbutazone

(300 mg) for 2 weeks. At the dose used, curcumin was well

tolerated, had no side effects, and exerted an antirheumatic

activity comparable to that of phenylbutazone.

Meanwhile, in a study of curcumin’s anti-inflammatory

properties, Satoskar et al. [173] evaluated curcumin’s effects

on spermatic cord edema and tenderness in 46 men between

15 and 68 years old who had just undergone surgical repair of

an inguinal hernia and/or hydrocele. After surgery, subjects

were randomly assigned to receive curcumin (400 mg),

phenylbutazone (100 mg), or placebo (250 mg lactose) three

times a day on postoperative days 1–5. As in a previous study

by Deodhar et al. [39], curcumin was deemed quite safe and,

along with phenylbutazone, elicited much better anti-inflam-

matory responses than placebo did [173].

6.3. Curcumin has potential as palliative therapy for
cancerous skin lesions

External sebaceous neoplasms (e.g., actinic keratosis, super-

ficial basal cell carcinoma, and external genital warts) have

traditionally been treated topically with corticosteroid creams.

In a study by Kuttan et al. [174], curcumin’s efficacy when

applied as either an ethanol extract of turmeric or as an

ointment to external cancerous skin lesions was evaluated in

62 patients. Regardless of the application, curcumin provided

remarkable symptomatic relief that was in many cases

relatively durable (lasting several months) and in all cases

(except for a single adverse reaction in one subject) extremely

safe. Its effects included less itching in almost all cases,
recumin’’: From kitchen to clinic, Biochem Pharmacol (2007),
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Table 6 – A list of clinical trials with curcumin in patients with different diseases

Disease Dose/frequency Patients End point modulation Reference

Safety trials

Phase 1 2000 mg/day1 10 Piperine enhanced bioavailability

by 2000%

[162]

Phase-I 500–12,000 mg/day � 90 days 25 Histologic improvement of

precancerous lesions4

[159]

Phase 1 500–12,000 mg/day 24 Safe, well-tolerated even at 12 g/day [42]

Efficacy trials

Rheumatoid arthritis 1200 mg/day � 14 days 18 Improved symptoms [39]

Postoperative inflammation 400 mg; 3�/day � 5 days 46 Decrease in inflammation [173]

External cancerous lesions 1% ointment � several months 62 Reduction in smell in 90% patients, [174]

reduction of itching in all cases,

dry lesions in 70% patients

reduction in lesion size and pain

in 10% patients

Cardiovascular 500 mg/day � 7 days 10 Decreased serum lipid peroxidase (33%), [175]

increased HDL cholesterol (29%),

decreased total serum cholesterol (12%)

Atherosclerosis 10 mg; 2�/day � 28 days 12 Lowered LDL and apoB,

increased HDL and ApoA [176]

HIV 625 mg; 4�/day � 56 days 40 Well tolerated [177]

Gall bladder function 20 mg, single dose (2 h) 12 Decreased gall bladder volume by 29% [178]

Gall bladder function 20–80 mg, single dose (2 h) 12 Decreased gall bladder volume by 72% [179]

Chronic anterior uveitis 375 mg; 3�/day � 84 days 32 Eighty-six percent decrease in chronic

anterior uveitis

[180]

Idiopathic Inflammatory Orbital 375 mg; 3�/day � 180–660 days 8 Four patients recovered completely [181]

Pseudotumors One patient showed decrease in swelling,

no recurrence

Psoriasis 1% curcumin gel 40 Decreased PhK2, TRR3, parakeratosis,

and density of epidermal CD8+ T cells

[182]

Colorectal cancer 36–180 mg/day � 120 days 15 Lowered GST [160]

Colorectal cancer 450–3600 mg/day � 120 days 15 Lowered inducible serum PGE2 levels [183]

Irritable bowel syndrome 72–144 mg/day � 56 days 207 Reduced symptoms [184]

Liver metastasis of CRC 450–3600 mg/day � 7 day 12 Low bioavailability [156]

Colorectal cancer 450–3600 mg/day � 7 days 12 Decreased M1G DNA adducts [161]

Cadaveric renal transplantation 480 mg; �1–2/day � 30 days 43 Improved renal function, reduced

neurotoxicity

[185]

Tropical pancreatitis 500 mg/day � 42 days 20 Reduction in the erythrocyte MDA levels [186]

Increased in erythrocyte GSH levels

Ulcerative proctitis 550 mg; � 2–3/day � 60 days 5 Improved symptoms [187]

Crohn’s disease 360 mg; �3/day � 30 days;

�4 for 60 days

5 Improved symptoms [187]

Ulcerative colitis 2000 mg/day � 180 days 89 Low recurrence; improved symptoms [188]

Familial adenomatous polyposis 480 mg; �3/day � 180 days 5 Decrease in the number of polyps was 60.4% [189]

Decrease in the size of polyps was 50.9%

Improves cogenitive function – 1010 Better MMSE score5 [190]

Prostatic intraepithelial

neoplasia (PIN)1

24 [191]

Helicobacter pylori infection2 300 mg/day � 7 days 25 Significant improvement of dyspeptic

symptoms

[192]

Note: 1, + piperine 20 mg/kg; 2, PhK: phosphorylase kinase; 3, TRR: keratinocyte transferrin receptor; 4, histologic improvement of precancerous

lesions was seen in one out of two patients with recently resected bladder cancer, two out of seven patients of oral leucoplakia, one out of six

patients of intestinal metaplasia of the stomach, one out of four patients with CIN and two out of six patients with Bowen’s disease; 5, MMSE:

Mini-Mental State Examination Score; 1, Zyflamend, a polyherbal preparation containing curcumin was used; PIN: prostatic intraepithelial

neoplasia.
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reduced lesion odor in 90%, dry lesions in 70%, and smaller

lesion size and pain mitigation in 10%.

6.4. Curcumin lowers serum cholesterol and lipid peroxide
levels in healthy individuals

While investigating the mechanisms of curcumin’s chemo-

preventive effects, in another study, Kuttan and coworker
Please cite this article in press as: Goel A, et al., Curcumin as ‘‘Cu
doi:10.1016/j.bcp.2007.08.016
[175] monitored curcumin’s effect on serum cholesterol and

lipid peroxide levels in 10 healthy volunteers. Daily admin-

istration of curcumin (500 mg) for 7 days led to a significant

33% decrease in serum lipid peroxides, a 29% increase in

serum HDL cholesterol, and a nearly 12% decrease in total

serum cholesterol. Together, these striking findings suggest a

potential chemopreventive role for curcumin in arterial

diseases [175]. In Concordant with these findings are results
recumin’’: From kitchen to clinic, Biochem Pharmacol (2007),
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of another study in which curcumin (10 mg) administered

twice a day for 28 days lowered serum LDL and increased

serum HDL levels in patients with atherosclerosis [176].

6.5. Curcumin may prevent gallstone formation

Curcumin has been evaluated for its ability to induce gall

bladder emptying and thus reduce gallstone formation, a

potential risk factor for gall bladder cancer. Agents that can

induce the gall bladder to contract and empty itself (e.g.,

erythromycin, fatty meals, and amino acids) have been

shown to reduce gallstone formation. In a randomized,

double-blind, crossover study involving 12 healthy volun-

teers [178], 20 mg curcumin produced a positive cholekinetic

effect that led to 29% contraction of the gall bladder. A

subsequent study indicated that doses of 40 and 80 mg

curcumin produced 50% and 72% contraction of the gall

bladder volume, respectively. Together, these results suggest

that curcumin can effectively induce the gall bladder to

empty and thereby reduce the risk of gallstone formation and

ultimately gall bladder cancer.

6.6. Curcumin is effective in patients with chronic anterior
uveitis and idiopathic inflammatory orbital pseudotumors

Curcumin’s anti-inflammatory effect has also been evaluated

in two rare inflammatory diseases—chronic anterior uveitis

(CAU) and idiopathic inflammatory orbital pseudotumors

(IIOTs). In a study by Lal et al. [180] involving patients with

CAU, curcumin was administered orally at a dose of 375 mg

three times a day for 12 weeks. Patients were segregated into

two groups: 18 patients who received curcumin alone and 14

patients who, in addition to CAU, had a strong reaction to a

PPD tuberculosis test and so received antitubercular treat-

ment in addition to curcumin. Patients in both groups began

showing improving after 2 weeks of treatment, although

those in the combination therapy group had a better response

rate of 86%. Moreover, at 3 years of follow-up, the recurrence

rate was much lower in the combination therapy group than

in the group treated with curcumin only (36% versus 55%).

Although approximately one in five patients in each treat-

ment group lost their vision in the follow-up period because of

various complications of the primary disease (e.g., vitritis,

macular edema, central venous block, cataract formation,

and glaucomatous optic nerve damage), none reported any

side effects of the curcumin therapy, In fact, in terms of safety

and efficacy, curcumin compared favorably with the only

current standard treatment for CAU (i.e., corticosteroid

therapy).

Encouraged by this clinical study, Lal et al. [181] proceeded

to evaluate curcumin as treatment for IIOT and found it to

be both safe and effective. In that relatively small study,

eight patients took curcumin orally at a dose of 375 mg three

times a day for 6–22 months and were followed up every 3

months for 2 years. Although only five patients completed

the study, four of them recovered completely and the fifth

experienced a complete resolution of tumor-related swelling

despite some residual limits on range of motion. Just

as encouraging was the lack of any recurrence or side

effects.
Please cite this article in press as: Goel A, et al., Curcumin as ‘‘Cu
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6.7. Curcumin beneficially affects psoriasis

Curcumin has also been shown to have beneficial effects on

psoriasis, another proinflammatory and potentially arthritis-

inducing skin disease. In one particular study, Heng et al. [182]

evaluated curcumin’s antipsoriatic effects indirectly by

measuring its influence on phosphorylase kinase activity.

(Curcumin is a potent selective inhibitor of phosphorylase

kinase, increased levels of which are considered by some to be

a surrogate marker of psoriatic disease.) Phosphorylase kinase

activity was assayed in four groups of 10 patients each: (i)

those with active untreated psoriasis; (ii) those with resolving

psoriasis treated with calcipotriol, a vitamin D3 analogue and

an indirect inhibitor of phosphorylase kinase; (iii) those with

resolving psoriasis treated with curcumin; and (iv) normal

nonpsoriatic subjects. Phosphorylase kinase activity was

highest in the patients with active untreated psoriasis,

lower in the calcipotriol-treated group, even lower in the

curcumin-treated group, and lowest in normal subjects.

Interestingly, the decreased phosphorylase kinase activity in

calcipotriol- and curcumin-treated patients was associated

with corresponding decreases in the expression of keratino-

cyte transferrin receptor (TRR), severity of parakeratosis, and

density of epidermal CD8+ T cells.

6.8. Curcumin safely exerts chemopreventive effects
against multiple human cancers

Apparently, curcumin can also safely exert chemopreventive

effects on premalignant lesions. In a prospective phase I dose-

escalation study, Chen et al. [195] examined the safety,

efficacy, and pharmacokinetics of curcumin in 25 patients

with a variety of high-risk Q. Precancerous lesions (i.e., recently

resected urinary bladder cancer (n = 2), arsenic Bowen’s

disease of the skin (n = 6), uterine cervical intraepithelial

neoplasm [CIN] (n = 4), oral leukoplakia (n = 7), and intestinal

metaplasia of the stomach (n = 6)). Curcumin was adminis-

tered to the first three patients at a starting dose of 500 mg/day

for 3 months and, if no grade 2 or higher toxicities were

observed, was increased to 1000, 2000, 4000, 8000, and finally

12,000 mg/day. Curcumin was not toxic at doses of 8000 mg/

day or lower, reaching peak serum concentrations at 1–2 h

(0.51 � 0.11 mM at 4000 mg, 0.63 � 0.06 mM at 6000 mg, and

1.77 � 1.87 mM at 8000 mg) and being gradually eliminated

(principally through nonurinary routes) within 12 h. Although

frank malignancies occurred despite curcumin treatment in

one patient each with CIN and oral leukoplakia, a remarkable

number of patients (i.e., one patient with recently resected

bladder cancer, two with oral leukoplakia, one with intestinal

metaplasia of the stomach, one with CIN, and two with

Bowen’s disease) showed histologic improvement of their

precancerous lesions.

6.9. Curcumin modulates biomarkers of colorectal cancer

Curcumin can also apparently modulate biomarkers of color-

ectal cancer. In a pilot dose-escalation study in 15 patients

with drug-resistant advanced colorectal cancer, Sharma et al.

[160] assessed the pharmacodynamics and pharmacokinetics

of a novel encapsulated turmeric extract administered at
recumin’’: From kitchen to clinic, Biochem Pharmacol (2007),
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doses ranging from 440 to 2200 mg/day for up to 4 months.

(Depending on the dose, each capsule contained 36–180 mg of

curcumin.) The compound’s effects were measured in terms

of its effects on two surrogate biomarkers (i.e., glutathione-S-

transferase [GST] activity and DNA adducts formed between

M(1)G and malondialdehyde) in blood cells. The compound

was deemed safe and effective after the investigators observed

no dose-limiting toxicity and a significant (59%) decrease in

GST activity at the lowest dose (440 mg) but none at higher

doses and clinically effective, and radiologically stable disease

in 33% (5/15) of patients after 2–4 months of treatment.

In a subsequent dose-escalation study in a similar

population, Sharma et al. [183] further explored the pharma-

cology of curcumin administered in capsules at daily doses

ranging from 0.45 to 3.6 g daily for up to 4 months. This time,

the compound’s effects on leukocytes were measured in terms

of three potential biomarkers: GST activity, deoxyguanosine

adduct M(1)G levels, and PGE2 production ex vivo. In a

comparison of inducible PGE2 production immediately before

and 1 h after dosing on days 1 and 29, the highest dose (3.6 g)

elicited significant decreases (62% and 57%, respectively).

Consequently, the investigators chose the 3.6 g dose for

further evaluation in a phase II trial in cancers outside the

gastrointestinal tract.

In a subsequent and similar study, the same investigators

asked whether pharmacologically active levels of curcumin

could be achieved in the colorectum of colorectal cancer

patients [161]. Encapsulated curcumin was administered

orally at three different daily doses (3600, 1800, or 450 mg)

for 7 days. Its biodistribution was then assayed by comparing

curcumin levels in biopsied specimens of normal and

malignant colorectal tissue obtained at diagnosis and 6–7 h

after the last curcumin dose, measuring the levels of M(1)G

and COX-2 protein in blood samples obtained 1 h after the last

curcumin dose, and quantitating blood levels of curcumin and

its metabolites by high-performance liquid chromatography

and UV spectrophotometry or mass spectrometry. At the

highest dose (3600 mg), the concentrations of curcumin

differed between normal and malignant tissues (12.7 � 5.7

versus 7.7 � 1.8 nmol/g). However, both normal and malignant

tissues from patients so treated contained curcumin sulfate

and curcumin glucuronide, and their peripheral circulation

contained trace amounts of curcumin. Furthermore, the DNA

adduct M(1)G was 2.5 times more abundant in cancerous

tissues than in normal tissues. At the highest dose (3600 mg),

curcumin lowered M1G levels (from 4.8 � 2.9 to 2.0 � 1.8

adducts per 107 nucleotides) but not COX-2 protein levels in

cancerous tissues. Together, these results suggested that

curcumin orally administered at a dose of 3600 mg could reach

pharmacologically efficacious levels in the colorectum while

at the same time being negligibly distributed outside the gut

[161].

6.10. Curcumin helps reduce symptoms of irritable bowel
syndrome

There is evidence that curcumin may help relieve symptoms

of the extremely common gastric disorder known as irritable

bowel syndrome (IBS). This chronic condition is characterized

by abdominal pain, alterations in bowel habits and stool
Please cite this article in press as: Goel A, et al., Curcumin as ‘‘Cu
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frequency, and poor quality of life and appears to be causally

associated with antibiotic use and inflammatory infection. In a

partially blinded, randomized, pilot study in which 207

healthy adults were randomly assigned to receive either one

or two tablets of a standardized turmeric extract daily for 8

weeks, IBS symptoms improved significantly after treatment

[184].

In a study by another group of investigators, oral curcumin

was administered in daily doses ranging from 450 to 3600 mg

to 12 patients about to undergo surgery for hepatic metastases

of colorectal cancer to determine whether enough of the

curcumin would reach normal and malignant human liver

tissue in concentrations sufficient to elicit pharmacologic

activity [156]. The compound’s resulting poor bioavailability

(as indicated by low nanomolar levels of the parent compound

and its glucuronide and sulfate conjugates in the peripheral or

portal circulation) led the investigators to conclude that

achieving pharmacologically effective concentrations of cur-

cumin in the liver is not feasible.

6.11. Curcumin improves early renal graft function

Curcumin has also been shown to beneficially influence early

kidney graft function, presumably due to its known ability to

induce the activity of the antioxidant hemoxygenase-1. In a

randomized, placebo-controlled trial, a combination of cur-

cumin 480 mg and quercetin 20 mg was administered orally in

capsule form to cadaveric kidney transplant recipients for 1

month, starting immediately after transplantation. The trial’s

43 subjects were randomly assigned to placebo (control), low-

dose (one capsule + one placebo), or high dose (two capsule)

regimens [185]. Graft function was assessed in terms of

delayed graft function (i.e., the need for dialysis in the first

week after transplantation) and slowed graft function (i.e.,

serum creatinine >2.5 mg/dL by post-transplantation day 10).

The investigators consequently observed much better early

graft function in treated patients than in controls (71% [low-

dose] versus 93% [high-dose] versus 43% [controls]), no

delayed graft function in any treated patients but delayed

function in 14% (2/14) of controls, and significantly lower

serum creatinine levels in treated patients after 2 and 30 days

of treatment. They also noted significantly higher levels of

urinary HO-1 in the two active treatment groups. Interestingly,

however, when compared with both the low-dose and control

regimens, only the high-dose regimen appeared to lower the

incidence of acute graft rejection at 6 months posttransplan-

tation (0% versus 14.3%) and reduce the incidence of tremors

(13% versus 46%).

6.12. Curcumin improves clinical outcome in patients with
tropical pancreatitis

Curcumin appears to improve the clinical outcomes of

patients suffering from chronic pancreatitis, an intensely

painful inflammatory condition induced by oxidative stress,

by reversing lipid peroxidation. As shown in a randomized,

placebo-controlled pilot study involving 20 patients with

tropical pancreatitis, an oral combination of curcumin

500 mg and piperine 5 mg provided effective pain relief and

beneficially modulated a pair of markers of oxidative stress
recumin’’: From kitchen to clinic, Biochem Pharmacol (2007),
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(i.e., significantly reduced malonyldialdehyde levels and

increased glutathione levels in erythrocytes) [186].

6.13. Curcumin is therapeutic in patients with
inflammatory bowel disease

Curcumin also appears to have beneficial therapeutic effects

on inflammatory bowel disease. Marked by chronic inflam-

mation of the colon and encompassing both ulcerative colitis

and Crohn’s disease, inflammatory bowel disease is a

frequent complication of and risk factor for colorectal cancer

in humans. In a preliminary open-label study based on its

preclinically established anti-inflammatory and antioxidant

properties, curcumin was administered to a small popula-

tion of patients with previously treated ulcerative proctitis

(n = 5) or Crohn’s disease (n = 5) [187]. The five patients with

ulcerative proctitis, who had been previously treated with 5-

aminosalicyclic acid (5ASA) compounds and (in four cases)

corticosteroids, received curcumin orally at a dose of 550 mg

twice daily for 1 month and then three times daily for

another month. The five patients with Crohn’s disease

received curcumin orally at a dose of 360 mg (one capsule)

three times daily for 1 month and then 360 mg (four

capsules) four times daily for another 2 months. By study’s

end, all five cases of ulcerative proctitis had significantly

improved to the point that two patients stopped taking

5ASAs and two others (including one who stopped taking

prednisone) reduced their 5ASA dosages, This improvement

was documented in terms of a return to normal limits of the

inflammatory indices of sedimentation rate and C-reactive

protein (CRP) level. Meanwhile, although only four of five

Crohn’s disease patients completed the study, those four

experienced also marked clinical improvement after curcu-

min treatment, as evidenced by reductions in several indices

including Crohn’s disease activity index (CDAI) scores,

sedimentation rate (i.e., a mean reduction of 10 mm/h,

and CRP (i.e., a mean reduction of 0.1 mg/dL). Moreover,

these four patients continued to show significant sympto-

matic improvement (i.e., more formed stools, less frequent

bowel movements, and less abdominal pain and cramping)

at monthly follow-up visits. In light of these extremely

encouraging findings, the investigators concluded that

double-blind placebo-controlled follow-up studies were

warranted.

In a subsequent randomized, double-blind, placebo-con-

trolled multicenter trial [188], Hanai et al. demonstrated

curcumin’s ability to safely and effectively prevent the relapse

of quiescent ulcerative colitis when delivered as maintenance

therapy. The 89 patients enrolled in the trial were randomly

assigned to a 6-month regimen of either placebo (n = 44) or

curcumin 1000 mg after breakfast and 1000 mg after dinner

(n = 45) in combination with sulfasalazine or mesalamine.

After 6 months of treatment, the relapse rate among evaluable

patients (n = 82) was significantly higher in the placebo group

(20.5% [8/39]) than in the curcumin-treated group (4.7% [2/43]).

Curcumin also appeared to suppress disease-associated

morbidity, as assessed in terms of clinical activity index

(CAI) and endoscopic index (EI) scores. After an additional 6-

month follow-up period, during which patients in both groups

took sulfasalazine or mesalamine, another 8 curcumin-
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treated patients and another 6 placebo-treated patients

experienced a disease relapse.

6.14. Curcumin reduces polyp numbers in patients with
familial adenomatous polyposis

Curcumin also appears to safely exert beneficial effects in

patients with FAP, an autosomal-dominant disorder char-

acterized by the formation of hundreds of colorectal adeno-

mas and eventually the development of colorectal cancer.

Typically, the growth of the adenomatous polyps is controlled

in part by treatment with nonsteroidal anti-inflammatory

drugs and COX-2 inhibitors, despite the considerable side

effects. Therefore, in a very small clinical trial, Cruz-Correa

et al. [189] evaluated curcumin’s ability to induce adenoma

regression in previously colectomized patients with FAP, In all

five cases, combination treatment with curcumin 480 mg and

quercetin 20 mg orally three times a day for a mean duration of

6 months significantly decreased mean polyp number and size

by 60.4% and 50.9%, respectively, without producing any

noticeable toxic side effects.

6.15. Curcumin may improve cognitive function in the
elderly

Despite preclinical evidence of curcumin’s ability to bind b-

amyloids and thereby reduce plaque burdens [51], there has

been little, if any, supporting epidemiologic evidence of this.

However, in a recent large, population-based study of 1010

elderly nondemented Asians, those who consumed curry

‘‘occasionally’’ and ‘‘often or very often’’ scored significantly

better on the Mini-Mental State Examination (MMSE), a

established measure of cognitive function, than did those

who ‘‘never or rarely’’ consumed curry [190]. At the least, this

finding warrants further investigation of curcumin’s cognitive

effects.

6.16. Curcumin may beneficially influence several cancer
precursor conditions

In addition to the published studies reviewed above, several

other trials have been investigating curcumin’s therapeutic

and chemopreventive potential in certain cancer precursor

conditions. One of them, a small 18-month study involving 24

human subjects and still in progress, is investigating curcu-

min’s effect on prostatic intraepithelial neoplasia (PIN), a

precursor of prostate cancer, when given in combination with

a herbal product called zyflamend [191]. Another study,

recently reported, found curcumin to exert beneficial effects

in patients withH. pylori infection, a precursor of gastric cancer

[192].

6.17. Curcumin has potential in advanced pancreatic
cancer

Curcumin has also been examined as a single-agent in

patients with advanced pancreatic cancer [196]. A dose of

8 g curcumin per day was administered for 2 months. The

results of this study showed that curcumin is well tolerated

and a sign of biological activity found in most patients.
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Table 7 – A list of ongoing clinical trials with curcumin in patients with different diseases

Disease Study type/design Patients # Start date Trial site

Colon cancer Phase-I, randomized 24 Completed University of Michigan, Ann Arbor, USA

Colorectal cancer, ACF1 Phase-I, randomized2 – Suspended Rockefeller University Hospital, New York,

USA

Colon cancer Phase-III, randomized 100 March 2006 Tel-Aviv Sourasky Medical Center,

Tel-Aviv, Israel

Colorectal cancer, ACF1 Phase-II, non-randomized 48 September 2006 University of Illinois, Chicago, USA

FAP Phase-II, randomized4 68 July 2005 University of Pennsylvania, Philadelphia,

USA

FAP Phase-II, non-randomized – November 2005 Johns Hopkins University, Baltimore, USA

Aberrant crypt foci Prevention, randomized5 60 April 2004 Cancer Institute of New Jersey,

New Brunswick, USA

Pancreatic cancer Phase-II, non-randomized6 45 July 2004 Rambam Medcial Center, Haifa, Israel

Pancreatic cancer Phase-II, non-randomized 50 November 2004 M.D. Anderson Cancer Center, Houston,

USA

Pharmacokinetics Treatment, non-randomized 6 August 2005 Massachusetts General Hospital, Boston,

USA

Myelodysplastic syndrome Phase II 30 University Massachusetts, Worcester,

USA (Raza A.)

Alzheimer’s disease Phase-II, randomized 33 July 2003 University of California Los Angeles,

Los Angeles, USA

Alzheimer’s disease Phase-I and II, randomized7 30 Completed Chinese University of Hong Kong,

Shatin, Hong Kong

Multiple myeloma Randomized8 30 November 2004 M.D. Anderson Cancer Center,

Houston, USA

Myelodysplastic syndrome Phase-I and II,

non-randomized9

50 December 2006 Hadassah Medical Organization,

Jerusalem, Israel

Psoriasis Phase-II, non-randomized10 – October 2005 University of Pennsylvania, Philadelphia,

USA

Epilepsy Phase 1 ? ? AIIMS, Delhi, India (Gupta Y.K.)

Advanced HNSCC Phase II (1–8 g/day; 56 days) 40 ? Himalyan Institute of Medical Sciences,

India (Saini S.)

HNSCC Phase II/III DBRPC

(3.6 g/day, bid)

300 ? AIIMS, Delhi, India (Bahadur S./Ranju

R./Rath G.K./Julka P.K.)

Cervical cancer

(Stage IIb, IIIb)

Phase II/III DBRPC

(2 g/day, bid, 1 year)

100 ? AIIMS, Delhi, India (Singh N./Jain

S.K./Rath G.K./Julka P.K.)

Oral premalignant lesions Phase II/III DBRPC

(4 g/day, bid � 28 days)

90 ? Tata Memorial Cancer Center, India

(D’Cruz A.)

Oral premalignant lesions Phase II/III DBRPC

(3.6 g/day, bid)

96 November 2006 Amrita Institute, Kochi, India

(Kuriakose M.A.)

Oral leukoplakia Phase II (curcumin gel,

3�/day, 6 month)

100 ? Regional Cancer Center, India

(Ramadas K., Pillai M.R.)

Gall bladder cancer Phase II (2–8 g/day) 60 ? BHU, India (Shukla V.K.)

Pancreatic cancer Phase II (8 g/day) 40 August 2007 Kyoto University, Japan

(Kanai M., Guha S.)

PSC Phase I (8 g/day) 20 August 2007 Amsterdam Medical Center

(Krishnadath K., Guha S.)

Ulcerative colitis Phase I (8 g/day) 20 August 2007 Amsterdam Medical Center

(Krishnadath K., Guha S.)

Barretts Metaplasia Phase I (8 g/day) 20 August 2007 Amsterdam Medical Center

(Krishnadath K., Guha S.)

MGUS Phase 1 (3.4 g/day) St. George Hospital, Sydney

(Terrance Diamond)

ACF, abrerrant crypt foci; DBRPC, double-blind randomized placebo-controlled; clinical trials were performed with curcumin in combination

with 2. quercetin2, sulindac; 2, celecoxoib; 3, 4, curcuminoids; 5, NSAIDs; 6, gemcitabine; 6, ginkgo extract; 7, bioperine; 8, coenzyme Q10; 10,

curcuminoids C3 complex; 11, gemcitabine + S-1; PSC: Primary Sclerosing Cholangitis. Website: www.clinicaltrial.gov.
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7. Ongoing clinical trials of curcumin

Enthusiasm for further studies of curcumin’s chemopre-

ventive and therapeutic effects continues to grow. Three
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trials of curcumiun have recently concluded, although their

results have yet to be published. At least 12 active clinical

trials of curcumin are ongoing in the United States, Israel,

and Hong Kong (Table 7). Curcumin is being used alone in
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most of these trials and in combination with quercetin or

sulindac in one. Meanwhile, chemoprevention trials of

curcumin in hepatocellular carcinoma, gastric cancer,

and colon cancer are ongoing in Japan. Here in the United

States, several randomized and nonrandomized phase I/II

trials (www.ClinicalTrials.gov) are investigating curcumin’s

effects on a range of human malignancies (e.g., colorectal

cancer, aberrant crypt foci, FAP, pancreatic cancer, multiple

myeloma, Alzheimer’s disease, myelodysplastic syndrome,

and psoriasis) when given alone or in conjunction with

other natural substances or nonsteroidal anti-inflammatory

drugs (NSAIDs).

Five ongoing phase I/II trials are studying curcumin’s

preventive and therapeutic effects on colorectal cancers in

patients with FAP and ACF. Two-phase II trials are

interrogating the effects of curcumin in advanced pancrea-

tic cancers. An Israeli trial is investigating the combined

effects of curcumin and gemcitabine in patients with

chemotherapy-naı̈ve, locally advanced or metastatic ade-

nocarcinomas of the pancreas, while an exploratory clinical

trial in the United States is testing the efficacy of curcumin

alone in patients with unresectable or metastatic pancreatic

cancers.

Two double-blind, placebo-controlled phase II trials

are evaluating the efficacy, safety, and tolerability of

two doses of curcumin C3 complex versus placebo in

patients with mild to moderate Alzheimer’s disease. An

Israeli clinical trial is investigating the clinical efficacy of

curcumin alone or in combination with coenzyme Q10 in

patients with myelodysplastic syndrome (MDS). At M.D.

Anderson Cancer Center, a pilot trial of curcumin alone or in

combination with bioprine (a black pepper extract) is

underway in patients with asymptomatic multiple mye-

loma.

8. Adverse effects of curcumin

Though curcumin is demonstrably bioactive and nontoxic,

there are rare anecdotal reports of its deleterious side effects

under certain conditions. Frank et al. [197] reported that

copper-bound curcumin loses its ability to inhibit liver and

kidney tumors in Cinnamon rats. Others have noted that

curcumin can exhibit some blood-thinning properties such as

suppression of platelet aggregation, although it remains to be

established whether curcumin interacts in any way with

blood-thinning drugs. Although several published studies

suggest that curcumin may beneficially induce apoptosis in

part through its induction of p53 expression [198], at least two

other studies suggest that curcumin may instead have a

deleterious, antiapoptotic effect by downregulating p53

[199,200]. Similarly, although dozens of studies indicate that

curcumin potentiates the effect of chemotherapeutic agents,

at least one study done in mice suggests that a curcumin-

supplemented diet may inhibit the antiproliferative effects of

cyclophosphamide on breast cancer growth (the investiga-

tors in that study, however, monitored tumor growth for only

3 days) [201]. There have also been reports of curcumin-

induced allergic contact dermatitis [202,203] and urticaria in

humans.
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9. Conclusions

Extensive research over the last half century has made clear

that most chronic illnesses can only be cured by multi-

targeted, as opposed to mono-targeted, therapy [204–206] and

that promiscuous targeting of a disease cell’s multiple bypass

mechanisms is a therapeutic virtue [207]. Consequently,

agents that can modulate multiple cellular targets are now

attractive objects of research. As this review has shown,

curcumin is one such agent and has the potential to treat a

variety of diseases. More extensive, well-controlled clinical

trials are now needed to fully evaluate its potential in terms of

optimal dose, route of administration, and disease targets and

potential interactions with other drugs. In light of the long and

established experience with curcumin as a foodstuff and as a

natural medicine in humans, its low cost, its proven

chemopreventive and therapeutic potential, and its pharma-

cological safety, curcumin is moving rapidly from the kitchen

shelf toward the clinic.
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